terça-feira, 18 de janeiro de 2011

Ácido lático...

           Para realizar quase todas as tarefas que nosso corpo necessita para a nossa sobrevivência (funções biológicas), ou para que possa realizar uma ação do nosso comando (movimentos e exercícios), é necessário um gasto de energia para que isto aconteça. Esta energia é proveniente de uma molécula chamada ATP (adenosina trifosfato – uma molécula universal condutora de alta energia) da qual já falamos muito em outros tópicos.
           À medida que o corpo vai realizando suas funções, o ATP é degradado e,  posteriormente, é restaurado por outra fonte energética que pode ser proveniente da fosfocreatina (uma outra molécula geradora de energia), das gorduras, dos carboidratos ou das proteínas.
          Conforme as necessidades energéticas vão avançando, o corpo utiliza o pouco ATP que ele tem disponível para realizar suas funções, a medida que o ATP acaba, é solicitado o uso da fosfocreatina para ressintetizar o ATP, porém a fosfocreatina também é pouca em nosso organismo. Então as necessidades energéticas continuam é o nosso organismo solicita outro macronutriente para realizar a ressintese do ATP. Entretanto, neste momento o nosso corpo precisa fazer uma escolha, ele precisa determinar qual substrato energético utilizar: gordura, na forma de triglicerídeos, ou carboidratos, na forma de glicose ou glicogênio muscular. Essa escolha irá depender de dois fatores: (1) a velocidade de ressintese do ATP; e (2) se há ou não a presença de oxigênio durante o processo de transformação.
          Na presença de oxigênio e na pouca necessidade de solicitação deste macronutriente, o organismo utilizaria a gordura para ressintetizar ATP, uma vez que a gordura gera mais ATP que a glicose, e sua fonte é praticamente ilimitada no nosso corpo, não levando-o ao risco de sofrer pela má utilização deste substrato. Por outro lado, na necessidade de alta velocidade de ressintese do ATP o organismo irá optar pela glicose ou glicogênio hepático e muscular; como em exercícios extenuantes e muito intensos. Isso também ocorreria na ausência de oxigênio durante o processo de transformação para gerar energia, chamado de ciclo da glicólise. Esse ciclo seria capaz de gerar energia suficiente para ressintese do ATP, mas teria um efeito indesejável, a produção de ácido lático (um subproduto "tóxico" gerado no decorrer do ciclo de ressintese do ATP), que faria com que o exercício fosse interrompido minutos depois pela instalação da fadiga muscular dos músculos ativos (músculos exercitados).
         O lactato não deve ser encarado como um produto de desgaste metabólico. Pelo contrário, proporciona uma fonte valiosa de energia química que se acumula como resultado do exercício intenso. Quando se torna novamente disponível uma quantidade suficiente de oxigênio durante a recuperação, ou quando o ritmo do exercício diminui, NAD+ (coenzima NADH em sua forma oxidada) varre os hidrogênios ligados ao lactato para subseqüente oxidação a fim de formar ATP. Os esqueletos de carbono das moléculas de piruvato formados novamente a partir do lactato durante o exercício serão oxidados para a obtenção de energia ou serão sintetizados (transformados) para glicose (gliconeogênese) no ciclo de Cori.  O ciclo de Cori não serve apenas para remover o lactato, mas o utiliza também para reabastecer as reservas de glicogênio depletadas no exercício árduo.
         A produção e o acúmulo de lactato são acelerados quando o exercício torna-se mais intenso e as células musculares não conseguem atender às demandas energéticas adicionais aerobicamente nem oxidar o lactato com o mesmo ritmo de sua produção.

 
Como podemos lidar com o ácido lático e o que fazer para sustentar a intensidade do exercício na presença dele?

A capacidade de gerar altos níveis sangüíneos de lactato durante o exercício máximo aumenta com o treinamento anaeróbio específico de velocidade-potência e, subseqüentemente, diminui com o destreinamento.

A manutenção de um baixo nível de lactato conserva também as reservas de glicogênio, o que permite prolongar a duração de um esforço aeróbico de alta intensidade.

Foi observado em pesquisas que, a elevação dos níveis de lactato observada nos indivíduos treinados quando exercitados agudamente foi significativamente menor que a observada nos sedentários. Tais resultados reproduzem os achados clássicos descritos na literatura, o que nos permite avaliar como eficazes, tanto na intensidade do exercício agudo na determinação de modificações no metabolismo energético, quanto o protocolo de treinamento físico na produção de adaptações orgânicas. Em outras palavras, treinar para aumentar o limiar anaeróbico.

Referências Bibliográficas:
  • FOSS, M.L.; KETEYIAN, S.J. Bases Fisiológicas do Exercício e do Esporte. 6ª ed. Rio de Janeiro. Guanabara Koogan, 2000.
  • MCARDLE, William D. et al. Fisiologia do Exercício - Energia, Nutrição e Desempenho Humano. 5.ed. Rio de Janeiro. Guanabara Koogan, 2001.
Mayara Menezes

Um comentário:

  1. Sem dúvida um trabalho de fôlego redigido de forma compreensível até para os leigos, mesmo sem fugir da precisão de processos bioquímicos que se requer à matéria. Antonio Tunouti - CRF/pR-365. Facebook.

    ResponderExcluir